Author Affiliations
Abstract
1 Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
2 Department of Bioengineering, University of California, Los Angeles, California 90095, USA
3 Shanghai Aerospace Electronic Technology Institute, Shanghai 201109, China
Phase imaging always deals with the problem of phase invisibility when capturing objects with existing light sensors. However, there is a demand for multiplane full intensity measurements and iterative propagation process or reliance on reference in most conventional approaches. In this paper, we present an end-to-end compressible phase imaging method based on deep neural networks, which can implement phase estimation using only binary measurements. A thin diffuser as a preprocessor is placed in front of the image sensor to implicitly encode the incoming wavefront information into the distortion and local variation of the generated speckles. Through the trained network, the phase profile of the object can be extracted from the discrete grains distributed in the low-bit-depth pattern. Our experiments demonstrate the faithful reconstruction with reasonable quality utilizing a single binary pattern and verify the high redundancy of the information in the intensity measurement for phase recovery. In addition to the advantages of efficiency and simplicity compared to now available imaging methods, our model provides significant compressibility for imaging data and can therefore facilitate the low-cost detection and efficient data transmission.
Photonics Research
2020, 8(10): 10001624

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!